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Society for Testing and Materials (ASTM). A new sampling
method, solid phase microextraction (SPME), has also recently

ABSTRACT: The purpose of this work was to investigate the util-
been introduced (9,10). This is a passive headspace extractionity of electronic aroma detection technologies for the detection and
method that incorporates a sorbent-coated silica fiber as the sam-identification of ignitable liquid accelerants and their residues in

suspected arson debris. Through the analysis of “known” acceler- pling medium and utilizes thermal desorption elution.
ants and residues, a trained neural network was developed for classi- Sample analysis is typically performed using gas chromatogra-
fying fire debris samples. Three “unknown” items taken from actual phy. The ASTM method uses gas chromatography and allows for
fire debris that had contained the fuels, gasoline, kerosene, and

a variety of detectors including flame ionization, photoionization,diesel fuel, were classified using this neural network. One item,
and mass spectrometric (11). The reported detection levels are 0.1taken from the area known to have contained diesel fuel, was cor-

rectly identified as diesel fuel residue every time. For the other two to 10 mL for petroleum products and liquid residues. The major
“unknown” items, variations in sample composition, possibly due problems associated with chromatographic methods are the com-
to the effects of weathering or increased sample humidities, were plexity of the chromatograms, the interference of pyrolysates from
shown to influence the sensor response. This manifested itself in

petroleum-based products, and change in chromatographic profilesinconsistent fingerprint patterns and incorrect classifications by the
due to sample evaporation. Mass spectrometric methods have beenneural network. Sorbent sampling prior to aroma detection was

demonstrated to reduce these problems and allowed improved neu- employed to simplify chromatograms and to discriminate against
ral network classification of the remaining items which were identi- pyrolytic interferences (12–16). These methods use extracted ion
fied as kerosene and gasoline residues. profiling (mass chromatography) to display the characteristic ions

for known classes of compounds as a function of time. The incorpo-
KEYWORDS: forensic science, accelerants, fire debris, arson, ration of macro-programming and expert systems has been investi-
aroma detection, gas sensor arrays, artificial neural network gated to categorize chromatographic profiles automatically

(17,18). Despite the widespread use of GC/MS-based methods,
intolerably long sample turn-around times are often reported dueArson is defined as the malicious burning of or attempt to burn
to lengthy sample preparation, analysis, and data interpretationproperty. The goal of arson investigations is to determine whether
requirements.there is evidence at the scene to indicate that the fire was deliber-

As an alternative to these methods, the ability to classify differ-ately set. Of primary interest to this type of investigation is the
ent ignitable liquid accelerants using aroma detection technologycause (nature of the solid or liquid accelerant and source of ignition
was investigated. Aromas are mixtures of volatile organic chemi-used) and origin of the fire. Suspicious fires are those that have
cals; each vapor sample may contain hundreds of volatile compo-multiple origins, suspicious burn patterns, an unusually high rate
nents. The key to aroma detection is not to monitor individualof spreading, or visible remnants of an ignition device or use of
chemicals but to have an array of sensors able to respond to a largean accelerant (1). When such evidence points toward a fire deliber-
number of different chemicals. The goal of an aroma detector isately set, the investigator must then search through the fire debris
to ensure that every component in a vapor is detected by at leastfor physical evidence to support their suspicions.
one sensor so that each vapor sample gives a characteristic finger-

A variety of analytical methods have been used for the chemical print from the sensor array. This is the basic operating principle
analysis of fire debris. The analytical challenge in analyzing fire behind some recently developed devices called “electronic noses”
debris is establishing the presence of trace accelerant residues in (19,20). The detection mechanism of the electronic devices mimics
a background of pyrolyzed material. The main areas of concern the main aspects of the canine olfactory system: sensing, signal
to the analyst include: sample preparation, analysis, and data inter- processing, and recognition (19–21). Because canines have been
pretation. Sample preparation techniques for the chemical analysis trained and used for the detection of ignitable liquid vapors indica-
of suspected arson debris have recently been reviewed (2). Gener- tive of accelerants (22), it is our belief that the electronic devices
ally, these methods can be divided into the following categories: may equally be applicable to the challenge.
direct headspace sampling (3), passive (4,5) and dynamic (6,7) The theory for scent detection is based on a “lock and key”

mechanism where each scent molecule has a different shape that
1Staff scientist, Oak Ridge National Laboratory, managed by Lockheed must fit within a scenting cell of the corresponding shape to be
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scenting cell, the impulse is sent to the brain for identification.Received 22 Jan. 1997; and in revised form 17 April, 14 July 1997;

accepted 14 July 1997. Likewise, a vapor sample is introduced across an array of sensors
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where each sensor within the array exhibits a characteristic change reference air. The analyzer unit houses the sensor array and connec-
tions to the sampling port.in electrical resistance upon interaction with the components of

the aroma. Recognition and identification can then be achieved The AromaScanner detects the composition of an aroma using
an array of 32 electrically conducting, organic polymer sensorsusing an artificial neural network trained on known vapor samples.

As in training canines for scent discrimination, identification by that respond to different volatile (and semi-volatile) chemicals to
yield a unique “fingerprint” for each vapor sample. An inking orthe neural network is only as good as the training set (i.e., the more

characteristic the data that is presented, the more discriminating masking process is used to put the polymer sensors on a single
computer chip or board. The sensors are based on the polymersthe instrument becomes). Despite the similarities between trained

police dogs and the electronic noses, aroma detection technologies of aniline, pyrrole, and thiophene to which different functional
groups have been added to produce unique sensing capabilities.have not been investigated seriously by the forensic or law enforce-

ment communities. It is this author’s belief that further experimen- The sensors respond to the steric, ionic, hydrophobic, and hydro-
philic variations of a sample causing temporary changes in electri-tal data will convince these communities of the utility of this

technology and how it can play a complementary role to canine cal resistance at the polymer surface. The kinetics of the reversible
adsorption and desorption processes occur rapidly at room temper-detection programs.
ature once equilibrium has been achieved.

The method used for analysis was reference air (0.5 min), sampleExperimental
(2 min), wash (1 min), and reference air (1.5 min). Each step in

Samples this sequence represents a change in valve state that controls the
flow of air across the sensors. In the first step, reference air wasThe ignitable liquids used in this study as accelerants were gaso-
sampled to give a stable baseline reading for the sensors. Next theline, kerosene, mineral spirits, motor oil, diesel fuel, and lacquer
volatiles that had accumulated in the headspace of the sealed pouchthinner. These chemicals were initially analyzed as the neat
were pulled across the sensors until the sensor response reached(pure/undiluted) liquid obtained from various commercial sources.
equilibrium. For this study, a sampling time of 2 minutes was“Known” liquid accelerant residue samples and “unknown” fire
sufficient for this purpose. Any residual sample vapors weredebris samples were collected from a controlled burn of an aban-
removed from the sensors during the wash step. A wash solutiondoned house. Aliquots of the neat liquids (1–2 L) were spread
of 2% butanol (recommended by the manufacturer) was found toacross separated 1–2 ft areas of carpeting and ignited. After a
be effective for this purpose. In the final step, reference air wasburn period, the fire was extinguished and carpet fragments were
sampled again to ensure that the sensor response returned to theircollected in sample pouches (for use as “known” accelerant residue
previous baseline readings. The raw data collected during acquisi-samples) and in paint cans (for later use as “unknown” fire debris
tion is shown in the line graph in Fig. 2a. This figure shows thesamples). The neat liquids (100 mL), “known” accelerant residues
individual response of each sensor over time for each of the four(∼10 g), and “unknown” fire debris samples (∼10 g) were placed
steps in the method sequence.into sample pouches prior to analysis. All samples were analyzed

using the equilibration method. In this technique, the sample (liquid
Data Manipulationor solid) was placed in the disposable sealed pouch (capacity ∼500

mL), filled with reference air, and allowed to equilibrate for 30
After acquisition of the raw data, data manipulation softwareminutes at 358C. The reference air humidity was set to ∼7.0 g/m3.

(supplied with the instrument) was used to develop databases con-
taining patterns that are characteristic of the specific sample aro-Sensor Array Analysis
mas. This was done by selecting the region of raw data with the

The instrument used in this study was the AromaScanner Elec- smallest deviation in pattern. The regions of greatest instability
tronic Aroma Detection Device (AromaScan, Inc., Hollis, NH). A were those at the start and end of the runs. The selected region
block diagram showing the basic operating components of this was then added to the database by averaging the sensor readings
system is shown in Fig. 1. The AromaScanner consists of two over the specified time interval to produce a fingerprint pattern or
components, a sample conditioning station and an analyzer unit. histogram, shown in Fig. 2b. Database entries can then be manipu-
The conditioning station incorporates an incubator for sample equi- lated using two working modes: difference and superimpose to
libration and a humidifier unit for adjusting the humidity of the provide quick comparisons. The databases can also be mapped to

provide a pictorial representation, or AromaMap, of pattern simi-
larity or difference. The statistical technique used in the data map-
ping software is based on Sammon mapping (23).

The final stage of data processing involved the evaluation of
an artificial neural network to classify aromas. The neural network
software uses proprietary pattern recognition algorithms employing
feed-forward fuzzy networks (24). Global classes are defined by
the user to be representative of the samples being classified. The
databases containing sets of sensor data patterns are called descrip-
tor databases and are used by the neural network as sub-classifiers.
These are the basic elements used in the pattern recognition pro-
cess. The training process used by the software is supervised feed-
forward using a three-layer network and fuzzy back-propagation
pattern recognition (25). The term feed-forward means that infor-
mation flows in only one direction while the term fuzzy is indica-FIG. 1—Block diagram of the AromaScanner electronic aroma detec-

tion device showing the basic operating components of the system. tiveof the addition of nodes in the output layer that represent an
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FIG. 2—The line graph (a) shows the raw data output from the sensor array and illustrates the four step sequence used for data acquisition. The
histogram (b) is an average of the sensor data over the time interval indicated by the cross-hairs shown in (a).
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FIG. 3—Replicate fingerprint patterns showing normalized response versus sensor element number for six ignitable liquid accelerants: (a) motor
oil, (b) kerosene, (c) mineral spirits, (d) diesel fuel, (e) gasoline, and (f) lacquer thinner. Normalized sensor response is equal to DR each sensor/DR
all sensors (where R is the resistance).
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unknown category. For this study, the neural network was trained were generally much greater indicating the ability to distinguish
these liquids. The exceptions were mineral spirits and keroseneusing 4 global classifiers (control, diesel fuel, gasoline, and kero-

sene) and 3 sub-classifiers (neat, weak residue, and strong residue). which had the lowest Euclidian distance and most similar patterns
and showed some overlap in the AromaMap (Fig. 4). Because
sensor response can be affected by humidity and the intensity ofResults and Discussion
the sensor response can be correlated with temperature, sample

The ability to differentiate liquid fuels (automotive and aviation) concentration, and equilibration time, it is believed that this prob-
using a simplified chemical sensor array in a neural network-based lem may be overcome by adjusting the sampling conditions. Ulti-
instrument has previously been reported (26,27). In this work, only mately, the uniqueness of the fingerprint patterns can be optimized
three metal oxide sensors were needed to classify aviation fuels by choosing different regions of the data to assure the most distinct
and seven sensors to classify gasoline as to octane rating and the pattern has been selected.
presence of alcohol. Although these were only preliminary find- Although the ability to distinguish different accelerants in the
ings, the results suggested that the methodology could be used pure liquid form was just demonstrated, the aroma from pyrolysates
to address other real-world problems. We have investigated the may complicate the identification of the accelerants as residues in
application of an electronic aroma detection device to the real- fire debris. To investigate this, accelerant residue samples from
world problem of arson. actual fire debris were obtained from a controlled burn of an aban-

The ability to discriminate ignitable liquid accelerants com- doned house. The samples were obtained by spreading 1–2 L of
monly used in arson cases (e.g., gasoline, kerosene, mineral spirits, gasoline, kerosene, and diesel fuel across separated 1–2 ft areas
lacquer thinner, motor oil, and diesel fuel) was determined initially of carpeting within the living room area of the house. The fire was
by analyzing the neat chemicals prior to ignition. Fingerprint pat- ignited and allowed to burn until the fire had spread throughout
terns, based on two replicate analyses, for each of the pure liquids the living room area and had consumed each of the areas containing
are shown in Fig. 3. These plots, shown as line graphs rather than the ignitable liquid accelerants at which time it was then extin-
histograms, depict normalized response versus sensor element guished with water. Fire debris samples consisting of carpeting,
number. Although these patterns show some similar characteristics, carpet backing or padding, and wood flooring were collected from
the individual chemicals can be distinguished based on these fin- each of the areas where the liquids were known to have been
gerprint patterns as illustrated in the corresponding AromaMap, poured. Confirmation that the samples contained the chemicals of
Fig. 4. An AromaMap is a multi-dimensional compression of the interest was determined by trained Fire Investigation personnel
fingerprint into a 2-dimensional plot defining the magnitude of the using sense of smell. Further confirmation was provided by com-
sample aroma differences by distance and direction. The statistical paring the fingerprint patterns of these samples with those obtained
technique is based on Sammon Mapping (23). Measurement of the from burnt carpet fragments fortified with small amounts of the
Euclidian distance between patterns of two aromas can be used to liquids. Alternate techniques such as GC/FID or GC/MS would
provide a quantifiable indication of the difference between them. have been required to unequivocally confirm the presence of the
The larger the Euclidian distance, the more distinguishable are the accelerants in these samples. Although these lengths were not taken
aromas. As a general guideline, Euclidian distances ,0.5 indicate in this preliminary investigation, future studies would include a
two aromas are indistinguishable. The Euclidian distances between secondary method of confirmation.
each of the neat ignitable liquids are shown in Table 1. The num- Distinguishable fingerprint patterns were obtained for the three
bers in bold show the Euclidian distances between two analyses residues tested and the control fire debris sample as shown in Fig.
of the same sample which were slightly greater than 0.5 for most 5. This figure shows the results for eight replicate analyses of each
of the analytes. This most likely suggests a problem with run-to-run sample. The patterns for the residues were also found to be different
reproducibility or changes in sample concentration after successive from those of the neat liquids which can be seen in the clustering
analyses. The Euclidian distances between two different chemicals of these samples in the AromaMap, Fig. 6. This difference can be

attributed to both the aroma from the pyrolyzed substrate material
and the weathering of the flammable liquid. Run-to-run variation,
identified by the loose clustering in the AromaMap and the repro-
ducibility of the fingerprint patterns, was also observed especially
for kerosene in both the neat and strong residue samples. This may
be attributed to slight changes in the sample composition with
equilibration time or inconsistent sampling conditions. Such fac-
tors as inconsistent sampling, variations in sample composition or
residue concentration, and fire to fire consistency may be limiting
factors for successful application of this technology.

Training of the artificial neural network was performed using
the databases created for the neat ignitable liquids and “known”
accelerant residues. The databases shown in the AromaMap, Fig.
6, were used to train the neural network for classifying the
“unknown” fire debris samples collected from the controlled house
fire. The neural network was set up using gasoline, kerosene, diesel
fuel and control as the global classifiers. The subclass identifiers
were either neat, weak or strong residue. Eight replicate analyses

FIG. 4—A multi-dimensional compression of the neat accelerant finger- of each sample were used in the training set. The strong residueprint data (shown in Fig. 3) into a 2-dimensional plot, or AromaMap,
samples used in the training set were then re-analyzed seven timesdefining the magnitude of the sample aroma differences by distance and

direction. over a period of 1 to 15 days and the resulting data was used to
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FIG. 5—Fingerprint patterns for the (a) control sample and the accelerant residues: (b) kerosene, (c) diesel fuel, and (d) gasoline. Residue aromas
were obtained from burnt carpeting, padding, wood flooring or combinations of these materials.

validate the neural network training set. These results can also be identified with diesel fuel as the global class 6 out of seven times.
It is unclear at this time why this result was obtained, however,used to reflect the sample integrity with respect to loss of sample

from the pouch, changes in sample humidity with time, and it is believed that additional data manipulation or further training
of the neural network may eliminate or minimize this problem.changes in aroma composition or concentration with equilibration

time. The results for the validation of the neural network are shown The kerosene residue was classified with the correct global and
subclass four out of seven times. Only one analysis was mis-in Table 2. The numbers given in the parentheses indicate the fit.

The diesel fuel residue sample was classified with the correct identified as unknown for both the global and subclasses. Six of
the seven analyses had kerosene correctly identified as the globalglobal and subclass for all seven analyses. These results suggest

that sample integrity and loss of sample from the pouch were class, but two of these had neat rather than strong residue as the
subclass. This is not surprising considering how closely the neatnegligible over the course of this study. The gasoline residue

was classified with the correct subclass each time, but incorrectly and strong residue samples for kerosene clustered in the AromaMap

TABLE 1—Euclidian distances for neat accelerants prior to ignition.

Accelerant Gasoline Kerosene Diesel Fuel Mineral Spirits Lacquer Thinner Motor Oil

Gasoline 1.298* 2.882 5.266 3.708 2.655 6.752
Kerosene 2.882 1.218 7.512 1.208 2.459 4.429
Diesel fuel 5.266 7.512 1.847 8.461 7.448 11.502
Mineral spirits 3.708 1.208 8.461 1.139 2.739 3.592
Lacquer thinner 2.655 2.459 7.448 2.739 0.797 4.824
Motor oil 6.752 4.429 11.502 3.592 4.824 1.355

*Numbers in bold indicate Euclidian distances between replicate analyses of same sample.
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FIG. 6—AromaMap of the “known” samples (neat ignitable liquids and accelerant residues) used to train the artificial neural network for classifying
“unknown” fire debris.

shown in Fig. 6. When two patterns overlap, the neural network may sample pouches. Two pouches (labeled a and b) per item were
prepared, analyzed, and classified using the neural network. Eighthave difficulty in making a distinction between them. Adjusting the

sampling conditions or sample composition may help make these replicate analyses were performed for each sample and the results
were predominantly identified by the neural network as diesel fueltwo samples more distinct.

After validation of the training set using the “known” strong for all six items. It was noted that four of the six items had exces-
sively high humidities (Ä12.0 g/m3) during sample acquisition thatresidue samples, the neural network was evaluated by analyzing

the “unknown” fire debris samples collected from the controlled were outside the range of the reference samples used to train the
neural network (7 ∼ 10.0 g/m3). Only the two samples correspondinghouse fire. Fire debris samples consisting of fragments of carpeting

and related materials were collected in paint cans from each of to item 3 had sample humidities in the correct range. This suggests
that fingerprint patterns for these two samples were not effectedthe three areas where the ignitable liquids were known to have

been poured. The paint cans were labeled as item 1, item 3, and by the sensor response to water. Confirmation of this can be seen
by comparing the fingerprint patterns for these samples with thatitem 5 where each item should have contained one of the three

different accelerants used in igniting the fire. Prior to analysis, of the “known” diesel fuel residue, Fig. 7. Both items 3a and 3b
were classified with the correct global class, diesel fuel, with fitssamples were removed from the paint cans and transferred to

TABLE 2—Validation of the neural network using the strong residue samples.

Gasoline Kerosene Diesel fuel
Analysis Global Sub-class Global Sub-class Global Sub-class

1 diesel fuel gas.res.str. kerosene ker.neat diesel fuel dies.res.str.
(96.5)* (90.7) (99.9) (95.5) (99.9) (95.6)

2 gasoline gas.res.str. kerosene ker.res.str. diesel fuel dies.res.str.
(93.5) (96.5) (82.3) (77.1) (99.9) (98.7)

3 diesel fuel gas.res.str. kerosene ker.res.str. diesel fuel dies.res.str.
(93.6) (95.5) (91.0) (86.9) (99.9) (99.0)

4 diesel fuel gas.res.str. kerosene ker. neat diesel fuel dies.res.str.
(99.4) (97.4) (99.9) (91.6) (100.0) (99.1)

5 diesel fuel gas.res.str. unknown unknown diesel fuel dies.res.str.
(99.4) (85.6) (100.0) (100.0) (99.9) (94.8)

6 diesel fuel gas.res.str. kerosene ker.res.str. diesel fuel dies.res.str.
(99.0) (87.9) (98.9) (86.9) (99.9) (94.5)

7 diesel fuel gas.res.str. kerosene ker.res.str. diesel fuel dies.res.str.
(96.0) (92.7) (96.7) (91.1) (99.9) (82.5)

*Numbers in ( ) indicate fit.
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Ä91.0 for each of the eight replicate analyses. The subclass identi-
fied for these samples varied between weak and strong diesel fuel
residue with fits ranging from 70.0 to 99.0.

For items 1 and 5, it is speculated that the excessively high sample
humidities interfered with the sensor response because all 32 sensors
will respond moderately to water. The higher humidities for the
“unknown” samples relative to the “known” may be attributed to the
different storage containers used. The “known” fire debris samples
were collected in pouches and analyzed almost immediately, while
the “unknown” fire debris samples were collected in paint cans
where they were stored prior to analysis. This difference has made
apparent the fact that variations in the water content between sam-
ples may effect the accuracy of neural network classification. This
again alludes to the fact that fire to fire consistency may be the
limiting factor for this technology. For example, the effects of
weathering can be varied and unpredictable and may also have con-
tributed to these results. Because of these effects, a means of
decreasing the sample humidities was investigated to obtain a more
accurate sensor response and pattern.

A sorbent material, Drieritet, was added in a vial to the sample
pouches containing items 1 and 5. One possible effect of the added
Drieritet might be the reduction of the sample humidity by removal
of water. The other effect that may be expected from the addition
of Drieritet is the concentration of the accelerant vapors on the
sorbent material. Activated charcoal strips, for example, are often
used in fire debris extractions for passive concentration of accelerant
vapors (28). After sitting overnight, the Drieritet was removed and
the samples were re-analyzed. Re-analysis of these samples showed
no decrease in sample humidity and no change in neural network
classification indicating that the Drierite was ineffective in remov-
ing water from the sample.

The Drieritet itself was then placed in a separate sample pouch,
allowed to equilibrate, analyzed and classified using the neural net-
work. The results for item 1b are shown in Fig. 8. The fingerprint
patterns for item 1b (8c) and the Drieritet used to sample item 1b
(8d) are compared to those for the “known” gasoline residue (8a) and
neat gasoline (8b). The sorbent sample pattern compares remarkable
well with the neat gasoline sample and neural network global-class
fits of 95.3 and 97.0 were obtained for this sample. The subclass
identifier for the sorbent sampled item 1b was neat gasoline with
fits of 94.3 and 99.2. Even with the use of the sorbent, item 1a
was still occasionally mis-identified by the neural network as either
unknown or kerosene. Correct global class fits for item 1a were
86.1 for duplicate analyses with subclass identifiers being either
unknown or neat diesel fuel. The problems associated with the neu-
ral network classification may reflect the fact that the training set
did not include vapors concentrated on a Drieritet sorbent and,
therefore, reflect a change in sampling conditions. These results
demonstrate the need to control sampling conditions and to mini-
mize variations in sample composition to achieve consistent results
and proper neural network classification. Because the sorbent
results were so promising, future work will include such reference

FIG. 7—Fingerprint patterns for the fire debris samples corresponding samples in the training set.
to item 3. Both samples 3a (b) and 3b (c) were identified by the neural Because item 5 was classified as a weak kerosene residue for
network as diesel fuel residue (a). two of the eight original analyses, it was speculated that other

variables besides humidity may have contributed to the misclassifi-
cations. Other factors that can influence sensor response are tem-
perature, concentration, and equilibration time. It is possible that
sample 5b produced a hit for kerosene only when sufficient concen-
trations were present in the headspace or after extensive equilibra-
tion times (e.g., after sitting overnight). The Drieritet sorbent was
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FIG. 8—Fingerprint patterns for gasoline as the (a) accelerant residue, (b) neat ignitable liquid, (c) item 1b, and (d) the Drierite used to concentrate
the vapors from item 1b.

also used to concentrate the accelerant vapors from samples contain- Sorbent sampling prior to aroma detection was demonstrated to
reduce these problems and to improve neural network classifica-ing item 5. After analysis of the sorbent, both items 5a and 5b

were correctly identified as kerosene. Global class fits for triplicate tion. Although the preliminary results were promising, more work
remains to be done to understand the relationship between theanalyses of these samples were Ä95.8. The subclass was always

identified as a weak kerosene residue with fits Ä96.0. These results accelerant, the potential substrate materials, the effect of the fire,
the method of extinguishing the fire and the effects they may haveillustrate the potential advantages of sorbent sampling to concen-

trate accelerant vapors prior to aroma detection. on sampling and sensor response. Further work is necessary to
determine the utility of sorbent sampling in conjunction with aroma
detection for addressing some of these issues.Conclusions
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